Αρχική World News Artificial Intelligence May Aid in the Discrimination of Radiation Pneumonitis from COVID-19-Associated...

Artificial Intelligence May Aid in the Discrimination of Radiation Pneumonitis from COVID-19-Associated Interstitial Pneumonia

An artificial intelligence (AI) algorithm was able to classify most patients with radiation induced pneumonitis into a category of low risk for Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) to assist in differentiating between the syndromes, according to findings presented at the European Lung Cancer Virtual Congress 2021 (25-27 March).

Sara Ramella of the Radiation Oncology, Campus Bio-Medico University in Rome, Italy underscored the importance of distinguishing between SARS-CoV-2-associated severe interstitial pneumonia and radiation pneumonitis, which demonstrate similar and overlapping clinical features. Prof. Ramella and colleagues conducted this study to determine whether a deep learning algorithm may aid in the determination of radiation pneumonitis from COVID-19 pneumonia.

The study analysed the data and computed tomography (CT) images of 34 patients with COVID-19 pneumonia and 36 with radiation pneumonitis. The InferReadTM CT Lung (COVID-19) ®, an Artificial Intelligence algorithm based on a novel deep convolutional neural network structure, was used to analyse the patients’ CT images. Cut-off for the estimated risk probability of COVID-19 was set at levels higher than 30% and categorised as COVID-19 high risk, according to a recent publication which determined the percentage of COVID-19 confirmed patients above this cut-off value was higher than 95%. Using the cut-off set in the same publication, values of estimated risk probability below 30% were classified as COVID-19 low risk.

Artificial-Intelligence-May-Aid-in-the-Discrimination-of-Radiation-Pneumonitis-from-COVID-19-Associated-Interstitial-Pneumonia-Figure-1

InferReadTM CT Lung (COVID-19) system interface example; comparison between a COVID-19 pneumonia positive patient (A) and a radiation pneumonitis-affected patient (B).

© Sara Ramella.

Statistical analyses included the Mann Whitney U test using a significance threshold of p < 0.05, and receiver operating characteristic (ROC) curve with fitting performed by using the maximum likelihood fit of a binormal model.

The algorithm aided the differential diagnosis of radiation- and COVID-19-associated pneumonia

According to the algorithm, 66.7% of patients with radiation pneumonitis were classified as COVID-19 low risk and all patients with radiation pneumonitis that were classified as COVID-19 high risk had ≥grade 3 disease.

The algorithm showed good accuracy in the detection of radiation pneumonia apart from COVID-19 pneumonia with 97% sensitivity and 2% specificity (area under the curve [AUC] 0.72). Accuracy was increased with the application of a 30% cut-off to 76% sensitivity and 63% specificity (AUC 0.84). The investigators also found that total lung volume (p = 0.001), the left lower lobe (p < 0.001), and the right lower lobe (p < 0.001) involvement were increased in the COVID-19 group compared to patients with radiation pneumonitis.

Artificial-Intelligence-May-Aid-in-the-Discrimination-of-Radiation-Pneumonitis-from-COVID-19-Associated-Interstitial-Pneumonia-Figure-2

Receiving operating curves (ROC) of the diagnostic performance of the artificial intelligence prediction risk of COVID-19 pneumonia. Each plot shows the ROC obtained on the testing after including the pairs: COVID-19 and pneumonia-free patients (A), RP and COVID-19 (B), COVID-19 and non-COVID-19 patients (C), RP and COVID-19 with 30% threshold (D), COVID-19 and RP total lung volume involvement (E), COVID-19 and RP RUL involvement (F), COVID-19 and RP RLL involvement (G), and COVID-19 and RP LLL involvement (H). Gray lines plot 95% confidence intervals.

RP – Radiation Pneumonitis, RUL – Right Upper Lobe, ML – Middle Lobe, RLL – Right Lower Lobe, LUL – Left Upper Lobe, LLL – Left Lower Lobe, AUC = area under ROC, Std. Error = Standard Error.

© Sara Ramella.

Conclusions

According to the authors, a deep-learning algorithm can help to discriminate radiation pneumonitis from COVID-19 pneumonia, and was able to classifying most radiation pneumonitis as low-risk COVID19. They advise that, in cases where patients treated with radiation therapy are classified as high risk, dosimetric factors should be taken into account.

They further recommend that, in cases where patients pretreated with radiotherapy and presenting with diffuse pneumonitis are classified by AI as COVID-19 high risk, a combination of dosimetric factors may help to identify radiation pneumonitis, such as an increase in positive predictive value from 60% to 99.8%.

No external funding was disclosed.

Reference

42P – Ramella S, Quattrocchi CC, Ippolito E, et al. Radiation induced pneumonitis in the era of COVID-19 pandemic: Artificial intelligence for differential diagnosis. European Lung Cancer Virtual Congress 2021 (25-27 March).

Source

NEWSLETTER

Συμπληρώστε το email σας για να λαμβάνετε τις σημαντικότερες ειδήσεις από το ogkologos.com

Βρείτε μας

2,449ΥποστηρικτέςΚάντε Like
57ΑκόλουθοιΑκολουθήστε

Διαβαστε Επίσης

Καρκίνος και Κορωνοϊός (COVID-19) ΜΕΡΟΣ Α

Εάν είστε καρκινοπαθής, το ανοσοποιητικό σας σύστημα μπορεί να μην είναι τόσο ισχυρό όσο κανονικά, έτσι μπορεί να ανησυχείτε για τους κινδύνους που σχετίζονται...

ΠΑΓΚΟΣΜΙΑ ΗΜΕΡΑ ΚΑΡΚΙΝΟΥ

Η Παγκόσμια Ημέρα Κατά του Καρκίνου καθιερώθηκε με πρωτοβουλία της Διεθνούς Ένωσης κατά του Καρκίνου (UICC), που εκπροσωπεί 800 οργανώσεις σε 155 χώρες του...

ΕΞΕΛΙΞΕΙΣ ΣΤΗ ΘΕΡΑΠΕΙΑ ΤΟΥ ΜΗ-ΜΙΚΡΟΚΥΤΤΑΡΙΚΟΥ ΚΑΡΚΙΝΟΥ ΤΟΥ ΠΝΕΥΜΟΝΑ (ΜΜΚΠ)

ΕΞΕΛΙΞΕΙΣ ΣΤΗ ΘΕΡΑΠΕΙΑ ΤΟΥ ΜΗ-ΜΙΚΡΟΚΥΤΤΑΡΙΚΟΥ ΚΑΡΚΙΝΟΥ ΤΟΥ ΠΝΕΥΜΟΝΑ (ΜΜΚΠ) Γράφει ο Δρ Παπαδούρης Σάββας, Παθόλογος-Ογκολόγος   Ο ΜΜΚΠ βρίσκεται αναλογικά στο 80% και πλέον του συνολικού...

Διατρέχουν όντως οι καρκινοπαθείς μεγαλύτερο κίνδυνο λόγω κοροναϊού;

Σε πρακτικό επίπεδο, τα δεδομένα των σχετικών μελετών υποδηλώνουν ότι η χημειοθεραπεία ή οι άλλες αντι-νεοπλασματικές θεραπείες δεν αυξάνουν σημαντικά τον κίνδυνο θνησιμότητας από...

FDA: Η ακτινοβολία των smartphones δεν προκαλεί καρκίνο

Σε μια νέα έκθεσή της, η Υπηρεσία Τροφίμων και Φαρμάκων (FDA) των ΗΠΑ αναφέρει ότι επανεξέτασε τις σχετικές επιστημονικές έρευνες που δημοσιεύθηκαν τα τελευταία...

Νέα ανακάλυψη, νέα ελπίδα για τον καρκίνο

Ένα νεοανακαλυφθέν τμήμα του ανοσοποιητικού μας συστήματος θα μπορούσε να αξιοποιηθεί για την αντιμετώπιση όλων των ειδών καρκίνου, σύμφωνα με επιστήμονες του πανεπιστημίου Cardiff...
- Advertisment -

Ροή Ειδήσεων

Making Important Decisions During Cancer: A Survivor’s Story

Bethany Hart lives with her husband Kevin, sons, and 3 dogs in the suburbs of Indianapolis, Indiana. She is a survivor of small cell neuroendocrine cervical cancer....

Adjuvant Immunotherapy Approved for Some Patients with Lung Cancer

October 26, 2021, by NCI Staff Atezolizumab (Tecentriq) is approved as an additional treatment for some patients with stage II to IIIA (pictured) non-small cell...

Cure Probability Models for Evaluation of Patients with a Previous Cancer Diagnosis for Solid Organ Transplantation

Findings from a first study that applied a formal statistical framework to inform the evaluation of transplant candidates with a previous cancer diagnosis were...

Teacher Reads To Students One Day After Having Brain Surgery

Meucci - who had her surgery on a Wednesday - was going live from her intensive care unit hospital room that very next Thursday...

6 things you need to know about cervical screening

This article was originally published in 2017 during Cervical Screening Awareness Week. It has now been reviewed and updated. Cervical screening, also known as the...

EMA Recommends Granting a Marketing Authorisation for Sacituzumab Govitecan

On 14 October 2021, the European Medicines Agency’s (EMA’s) Committee for Medicinal Products for Human Use (CHMP) adopted a positive opinion, recommending the granting...